41586_2025_8749_Fig1_HTML.png

BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments

  • Jensen, R. B., Carreira, A. & Kowalczykowski, S. C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bell, J. C., Dombrowski, C. C., Plank, J. L., Jensen, R. B. & Kowalczykowski, S. C. BRCA2 chaperones RAD51 to single molecules of RPA-coated ssDNA. Proc. Natl Acad. Sci. USA 120, e2221971120 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • McCabe, N. et al. BRCA2-deficient CAPAN-1 cells are extremely sensitive to the inhibition of poly(ADP-ribose) polymerase: an issue of potency. Cancer Biol. Ther. 4, 934–936 (2005).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921 (2005).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Fong, P. C. et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N. Engl. J. Med. 361, 123–134 (2009).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Lord, C. J. & Ashworth, A. PARP inhibitors: synthetic lethality in the clinic. Science 355, 1152–1158 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wooster, R. et al. Identification of the breast-cancer susceptibility gene Brca2. Nature 378, 789–792 (1995).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Phelan, C. M. et al. Mutation analysis of the BRCA2 gene in 49 site-specific breast cancer families. Nat. Genet. 13, 120–122 (1996).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Tutt, A. & Ashworth, A. The relationship between the roles of BRCA genes in DNA repair and cancer predisposition. Trends Mol. Med. 8, 571–576 (2002).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Nyberg, T. et al. Prostate cancer risks for male BRCA1 and BRCA2 mutation carriers: a prospective cohort study. Eur. Urol. 77, 24–35 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Wong, A. K., Pero, R., Ormonde, P. A., Tavtigian, S. V. & Bartel, P. L. RAD51 interacts with the evolutionarily conserved BRC motifs in the human breast cancer susceptibility gene Brca2. J. Biol. Chem. 272, 31941–31944 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • Sharan, S. K. et al. Embryonic lethality and radiation hypersensitivity mediated by Rad51 in mice lacking Brca2. Nature 386, 804–810 (1997).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Whelan, D. R. et al. Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat. Commun. 9, 3882 (2018).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Davies, A. A. et al. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Mol. Cell 7, 273–282 (2001).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Prakash, R., Zhang, Y., Feng, W. R. & Jasin, M. Homologous recombination and human health: the roles of BRCA1, BRCA2, and associated proteins. Cold Spring Harb. Perspect. Biol. 7, a016600 (2015).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Anand, R., Ranjha, L., Cannavo, E. & Cejka, P. Phosphorylated CtIP functions as a co-factor of the MRE11–RAD50–NBS1 endonuclease in DNA end resection. Mol. Cell 64, 940–950 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 447, 346–346 (2007).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • Sung, P. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265, 1241–1243 (1994).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Belan, O. et al. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Mol. Cell 83, 2925–2940 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Sung, P. & Robberson, D. L. DNA strand exchange mediated by a Rad51–Ssdna nucleoprotein filament with polarity opposite to that of Reca. Cell 82, 453–461 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • Baumann, P., Benson, F. E. & West, S. C. Human RAD51 protein promotes ATP-dependent homologous pairing and strand transfer reactions in vitro. Cell 87, 757–766 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • Ogawa, T., Yu, X., Shinohara, A. & Egelman, E. H. Similarity of the yeast Rad51 filament to the bacterial Reca filament. Science 259, 1896–1899 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Yu, X., Jacobs, S. A., West, S. C., Ogawa, T. & Egelman, E. H. Domain structure and dynamics in the helical filaments formed by RecA and Rad51 on DNA. Proc. Natl Acad. Sci. USA 98, 8419–8424 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Pellegrini, L. et al. Insights into DNA recombination from the structure of a RAD51–BRCA2 complex. Nature 420, 287–293 (2002).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Subramanyam, S., Ismail, M., Bhattacharya, I. & Spies, M. Tyrosine phosphorylation stimulates activity of human RAD51 recombinase through altered nucleoprotein filament dynamics. Proc. Natl Acad. Sci. USA 113, E6045–E6054 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Joo, C. et al. Real-time observation of RecA filament dynamics with single monomer resolution. Cell 126, 515–527 (2006).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jimenez-Sainz, J. et al. BRCA2 BRC missense variants disrupt RAD51-dependent DNA repair. eLife 11, e79183 (2022).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marsden, C. G. et al. The tumor-associated variant RAD51 G151D induces a hyper-recombination phenotype. PLoS Genet. 12, e1006208 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. et al. A basal-level activity of ATR links replication fork surveillance and stress response. Mol. Cell 81, 4243–4257 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Laspata, N., Muoio, D. & Fouquerel, E. Multifaceted role of PARP1 in maintaining genome stability through its binding to alternative DNA structures. J. Mol. Biol. 436, 168207 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Zandarashvili, L. et al. Structural basis for allosteric PARP-1 retention on DNA breaks. Science 368, eaax6367 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adolph, M. B. et al. RADX controls RAD51 filament dynamics to regulate replication fork stability. Mol. Cell 81, 1074–1083 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Simandlova, J. et al. FBH1 helicase disrupts RAD51 filaments in vitro and modulates homologous recombination in mammalian cells. J. Biol. Chem. 288, 34168–34180 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Xue, H. et al. A two-step mechanism governing PARP1–DNA retention by PARP inhibitors. Sci. Adv. 8, eabq0414 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Adamowicz, M. et al. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat. Cell Biol. 23, 1287–1298 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hucl, T. et al. A syngeneic variance library for functional annotation of human variation: application to BRCA2. Cancer Res. 68, 5023–5030 (2008).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Whelan, D. R. et al. Super-resolution visualization of distinct stalled and broken replication fork structures. PLoS Genet. 16, e1009256 (2020).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Whelan, D. R. & Rothenberg, E. Super-resolution mapping of cellular double-strand break resection complexes during homologous recombination. Proc. Natl Acad. Sci. USA 118, e2021963118 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nakamura, K. et al. Proteome dynamics at broken replication forks reveal a distinct ATM-directed repair response suppressing DNA double-strand break ubiquitination. Mol. Cell 81, 1084–1099 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Li, M. & Yu, X. C. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23, 693–704 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Scott, D. E. et al. A small-molecule inhibitor of the BRCA2–RAD51 interaction modulates RAD51 assembly and potentiates DNA damage-induced cell death. Cell Chem. Biol. 28, 835–847 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Noordermeer, S. M. & van Attikum, H. PARP inhibitor resistance: a tug-of-war in BRCA-mutated cells. Trends Cell Biol. 29, 820–834 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Dai, M. F. et al. Safety and hematological toxicities of PARP inhibitors in patients with cancer: a systematic review of randomized controlled trials and a pharmacovigilance analysis. Expert Rev. Anticancer Ther. 24, 613–622 (2024).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Frenel, J. S. et al. Efficacy of subsequent chemotherapy for patients with BRCA1/2-mutated recurrent epithelial ovarian cancer progressing on olaparib versus placebo maintenance: post-hoc analyses of the SOLO2/ENGOT Ov-21 trial. Ann. Oncol. 33, 1021–1028 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Schlacher, K. et al. Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 993–993 (2011).

    CAS 
    MATH 

    Google Scholar
     

  • Cong, K. et al. Replication gaps are a key determinant of PARP inhibitor synthetic lethality with BRCA deficiency. Mol. Cell 81, 3128–3144 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Vugic, D. et al. Replication gap suppression depends on the double-strand DNA binding activity of BRCA2. Nat. Commun. 14, 446 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fanale, D. et al. BRCA1/2 variants of unknown significance in hereditary breast and ovarian cancer (HBOC) syndrome: looking for the hidden meaning. Crit. Rev. Oncol. Hematol. 172, 103626 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Jimenez-Sainz, J. & Jensen, R. B. Imprecise medicine: BRCA2 variants of uncertain significance (VUS), the challenges and benefits to integrate a functional assay workflow with clinical decision rules. Genes 12, 780 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rouleau-Turcotte, E. & Pascal, J. M. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J. Biol. Chem. 299, 105397 (2023).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beneyton, A. et al. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 5, zcad043 (2023).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Goehring, L. et al. Dormant origin firing promotes head-on transcription–replication conflicts at transcription termination sites in response to BRCA2 deficiency. Nat. Commun. 15, 4716 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Petropoulos, M. et al. Transcription–replication conflicts underlie sensitivity to PARP inhibitors. Nature 628, 433–441 (2024).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Dias, M. P., Moser, S. C., Ganesan, S. & Jonkers, J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 18, 773–791 (2021).

    PubMed 

    Google Scholar
     

  • Appleby, R., Joudeh, L., Cobbett, K. & Pellegrini, L. Structural basis for stabilisation of the RAD51 nucleoprotein filament by BRCA2. Nat. Commun. 14, 7003 (2023).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Park, P. H. et al. Amplification of the mutation-carrying BRCA2 allele promotes RAD51 loading and PARP inhibitor resistance in the absence of reversion mutations. Mol. Cancer Ther. 19, 602–613 (2020).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Walmsley, C. S. et al. Convergent evolution of BRCA2 reversion mutations under therapeutic pressure by PARP inhibition and platinum chemotherapy. NPJ Precis. Oncol. 8, 34 (2024).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jensen, R. Purification of recombinant 2XMBP tagged human proteins from human cells. Methods Mol. Biol. 1176, 209–217 (2014).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Carreira, A. et al. The BRC repeats of BRCA2 modulate the DNA-binding selectivity of RAD51. Cell 136, 1032–1043 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pommier, Y. et al. Differential trapping of PARP1 and PARP2 by clinical PARP inhibitors. Eur. J. Cancer 48, 87–87 (2012).

    MATH 

    Google Scholar
     

  • Murai, J. et al. Stereospecific PARP trapping by BMN 673 and comparison with olaparib and rucaparib. Mol. Cancer Ther. 13, 433–443 (2014).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Matta, E., Kiribayeva, A., Khassenov, B., Matkarimov, B. T. & Ishchenko, A. A. Insight into DNA substrate specificity of PARP1-catalysed DNA poly(ADP-ribosyl)ation. Sci. Rep. 10, 3699 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bryant, H. E. et al. PARP is activated at stalled forks to mediate Mre11-dependent replication restart and recombination. EMBO J. 28, 2601–2615 (2009).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Eustermann, S. et al. The DNA-binding domain of human PARP-1 interacts with DNA single-strand breaks as a monomer through its second zinc finger. J. Mol. Biol. 407, 149–170 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rudolph, J., Mahadevan, J., Dyer, P. & Luger, K. Poly(ADP-ribose) polymerase 1 searches DNA via a ‘monkey bar’ mechanism. eLife 7, e37818 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shao, Z. et al. Clinical PARP inhibitors do not abrogate PARP1 exchange at DNA damage sites in vivo. Nucleic Acids Res. 48, 9694–9709 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lahiri, S. & Jensen, R. B. DNA strand exchange to monitor human RAD51-mediated strand invasion and pairing. Methods Mol. Biol. 2153, 101–113 (2021).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Hellenkamp, B. et al. Precision and accuracy of single-molecule FRET measurements—a multi-laboratory benchmark study. Nat. Methods 15, 669–676 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bronson, J. E., Fei, J. Y., Hofman, J. M., Gonzalez, R. L. & Wiggins, C. H. Learning rates and states from biophysical time series: a Bayesian approach to model selection and single-molecule FRET data. Biophys. J. 97, 3196–3205 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Meent, J. W., Bronson, J. E., Wiggins, C. H. & Gonzalez, R. L. Empirical Bayes methods enable advanced population-level analyses of single-molecule FRET experiments. Biophys. J. 106, 1327–1337 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Meent, J. W., Bronson, J. E., Wood, F., Gonzalez, R. L. Jr. & Wiggins, C. H. Hierarchically-coupled hidden Markov models for learning kinetic rates from single-molecule data. JMLR Workshop Conf. Proc. 28, 361–369 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cui, T. J. et al. Argonaute bypasses cellular obstacles without hindrance during target search. Nat. Commun. 10, 4390 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gotz, M. et al. A blind benchmark of analysis tools to infer kinetic rate constants from single-molecule FRET trajectories. Nat. Commun. 13, 5402 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Jensen, R. B., Ozes, A., Kim, T., Estep, A. & Kowalczykowski, S. C. BRCA2 is epistatic to the RAD51 paralogs in response to DNA damage. DNA Repair 12, 306–311 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Coleman, K. E. et al. USP1-trapping lesions as a source of DNA replication stress and genomic instability. Nat. Commun. 13, 1740 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Yin, Y. & Rothenberg, E. Probing the spatial organization of molecular complexes using triple-pair-correlation. Sci. Rep. 6, 30819 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, W. T. C. et al. Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress signaling. Nat. Commun. 12, 2525 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Pinkard, H. et al. Pycro-Manager: open-source software for customized and reproducible microscope control. Nat. Methods 18, 226–228 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yin, Y. D., Lee, W. T. C. & Rothenberg, E. Ultrafast data mining of molecular assemblies in multiplexed high-density super-resolution images. Nat. Commun. 10, 119 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Huang, F. et al. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10, 653–658 (2013).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Huang, F., Schwartz, S. L., Byars, J. M. & Lidke, K. A. Simultaneous multiple-emitter fitting for single molecule super-resolution imaging. Biomed. Opt. Express 2, 1377–1393 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sengupta, P. et al. Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis. Nat. Methods 8, 969–975 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Holden, S. J., Uphoff, S. & Kapanidis, A. N. DAOSTORM: an algorithm for high-density super-resolution microscopy. Nat. Methods 8, 279–280 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Ovesny, M., Krizek, P., Borkovec, J., Svindrych, Z. K. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rothenberg, E. BRCA2 prevents PARPi-mediated PARP1 retention to protect RAD51 filaments. Zenodo https://doi.org/10.5281/zenodo.14713371 (2025)


  • Source link

    Tags: No tags

    Add a Comment

    Your email address will not be published. Required fields are marked *

    Gravatar profile