41586_2025_8731_Fig1_HTML.png

A prospective code for value in the serotonin system

  • Dayan, P. & Huys, Q. Serotonin’s many meanings elude simple theories. eLife 4, e07390 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, Z., Lin, R. & Luo, M. Reward contributions to serotonergic functions. Annu. Rev. Neurosci. 43, 141–162 (2020).

    PubMed 
    MATH 

    Google Scholar
     

  • Matias, S., Lottem, E., Dugué, G. P. & Mainen, Z. F. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 6, e20552 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paquelet, G. E. et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron 110, 2664–2679 (2022).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Grossman, C. D., Bari, B. A. & Cohen, J. Y. Serotonin neurons modulate learning rate through uncertainty. Curr. Biol. 32, 586–599 (2022).

    CAS 
    PubMed 

    Google Scholar
     

  • Sutton, R. S. & Barto, A. G. Reinforcement Learning 2nd edn (MIT, 2018).

  • Harkin, E. F. et al. Temporal derivative computation in the dorsal raphe network revealed by an experimentally-driven augmented integrate-and-fire modeling framework. eLife 12, e72951 (2023).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37, 8863–8875 (2017).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487 (2018).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Feng, Y.-Y., Bromberg-Martin, E. S. & Monosov, I. E. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep. 43, 114341 (2024).

  • Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9, 319–335 (1986).


    Google Scholar
     

  • Deakin, J. F. W. & Graeff, F. G. 5-HT and mechanisms of defence. J. Psychopharmacol. 5, 305–315 (1991).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Jacobs, B. & Fornal, C. in Psychopharmacology: 4th Generation of Progress (eds Bloom, F.E. & Kupfer D.J.) 461–469 (Raven, 1995).

  • Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).

    PubMed 
    MATH 

    Google Scholar
     

  • Dayan, P. & Huys, Q. Serotonin in affective control. Annu. Rev. Neurosci. 32, 95–126 (2009).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Boureau, Y.-L. & Dayan, P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36, 74–97 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Cools, R., Nakamura, K. & Daw, N. D. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36, 98–113 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • Azmitia, E. C. in Handbook of the Behavioral Neurobiology of Serotonin Vol. 31 (eds Müller, C. P. & Cunningham, K. A.) 3–22 (Elsevier, 2020).

  • Shine, J. M. et al. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 145, 2967–2981 (2022).

    PubMed 
    MATH 

    Google Scholar
     

  • Koolschijn, R. S. et al. Resources, costs and long-term value: an integrative perspective on serotonin and meta-decision making. Curr. Opin. Behav. Sci. 60, 101453 (2024).


    Google Scholar
     

  • Luo, M., Li, Y. & Zhong, W. Do dorsal raphe 5-HT neurons encode ‘beneficialness’? Neurobiol. Learn. Mem. 135, 40–49 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • Spring, M. G. & Nautiyal, K. M. Striatal serotonin release signals reward value. J. Neurosci. 44, e0602242024 (2024).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Haider, P. et al. Latent equilibrium: a unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Adv. Neural Inf. Process. Syst. 34, 17839–17851 (2021).

    MATH 

    Google Scholar
     

  • Srinivasan, M., Laughlin, S. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. 216, 427–459 (1982).

    ADS 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Spratling, M. A review of predictive coding algorithms. Brain Cognition 112, 92–97 (2017).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Chalk, M., Marre, O. & Tkačik, G. Toward a unified theory of efficient, predictive, and sparse coding. Proc. Natl Acad. Sci. USA 115, 186–191 (2018).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • Masani, K., Vette, A. & Popovic, M. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23, 164–172 (2006).

    PubMed 

    Google Scholar
     

  • De Jong, J. W., Liang, Y., Verharen, J. P. H., Fraser, K. M. & Lammel, S. State and rate-of-change encoding in parallel mesoaccumbal dopamine pathways. Nat. Neurosci. 27, 309–318 (2024).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lundstrom, B. N., Higgs, M. H., Spain, W. J. & Fairhall, A. L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).

    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Baleanu, D., Fernandez, A. & Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 8, 360 (2020).

    MATH 

    Google Scholar
     

  • dos Santos Matias, S. P. Dynamics of Serotonergic Neurons Revealed by Fiber Photometry. PhD thesis, Univ. NOVA de Lisboa (2016).

  • Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).

    PubMed 
    MATH 

    Google Scholar
     

  • Kobayashi, S. & Schultz, W. Influence of reward delays on responses of dopamine neurons. J. Neurosci. 28, 7837–7846 (2008).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Masset, P. et al. Multi-timescale reinforcement learning in the brain. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566754 (2023).

  • Sousa, M. et al. Dopamine neurons encode a multidimensional probabilistic map of future reward. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566727 (2023).

  • Miyazaki, K., Miyazaki, K. W. & Doya, K. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J. Neurosci. 31, 469–479 (2011).

    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Cohen, J., Grossman, C. & Bari, B. Serotonin neurons modulate learning rate through uncertainty. Dryad https://doi.org/10.5061/dryad.cz8w9gj4s (2021).

  • Aghajanian, G. & Vandermaelen, C. Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effects of LSD. Brain Res. 238, 463–469 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • Vandermaelen, C. & Aghajanian, G. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289, 109–119 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • Lynn, M. B. et al. A slow 5-HT1AR-mediated recurrent inhibitory network in raphe computes contextual value through synaptic facilitation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.31.506056 (2022).

  • Miyazaki, K. et al. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat. Commun. 9, 2048 (2018).

    ADS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Okaty, B. W., Commons, K. G. & Dymecki, S. M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 20, 397–424 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    MATH 

    Google Scholar
     

  • Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B. & Daw, N. D. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat. Neurosci. 27, 1574–1586 (2024).

    CAS 
    PubMed 

    Google Scholar
     

  • Calizo, L. H. et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61, 524–543 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Fernandez, S. P. et al. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct. Funct. 221, 4007–4025 (2016).

    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • van Seijen, H. & Sutton, R. True online TD(λ). Int. Conf. Mach. Learn. 32, 692–700 (2014).

    MATH 

    Google Scholar
     

  • Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C. & Sutton, R. S. True online temporal-difference learning. J. Mach. Learn. Res. 17, 5057–5096 (2016).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Ranade, S. P. & Mainen, Z. F. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J. Neurophysiol. 102, 3026–3037 (2009).

    PubMed 
    MATH 

    Google Scholar
     

  • Elber-Dorozko, L. & Loewenstein, Y. Striatal action-value neurons reconsidered. eLife 7, e34248 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hesterberg, T. C. What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum. Am. Statistician 69, 371–386 (2015).

    MathSciNet 
    MATH 

    Google Scholar
     

  • Li, Y. & Luo, M. In vivo electrophysiological data of DRN serotonin neurons. Zenodo https://doi.org/10.5281/zenodo.12776509 (2024).

  • Harkin, E. F. & Naud, R. Code and data for ‘A prospective code for value in the serotonin system’. Zenodo https://doi.org/10.5281/zenodo.14623230 (2025).


  • Source link

    Tags: No tags

    Add a Comment

    Your email address will not be published. Required fields are marked *

    Gravatar profile