Dayan, P. & Huys, Q. Serotonin’s many meanings elude simple theories. eLife 4, e07390 (2015).
Liu, Z., Lin, R. & Luo, M. Reward contributions to serotonergic functions. Annu. Rev. Neurosci. 43, 141–162 (2020).
Matias, S., Lottem, E., Dugué, G. P. & Mainen, Z. F. Activity patterns of serotonin neurons underlying cognitive flexibility. eLife 6, e20552 (2017).
Paquelet, G. E. et al. Single-cell activity and network properties of dorsal raphe nucleus serotonin neurons during emotionally salient behaviors. Neuron 110, 2664–2679 (2022).
Grossman, C. D., Bari, B. A. & Cohen, J. Y. Serotonin neurons modulate learning rate through uncertainty. Curr. Biol. 32, 586–599 (2022).
Sutton, R. S. & Barto, A. G. Reinforcement Learning 2nd edn (MIT, 2018).
Harkin, E. F. et al. Temporal derivative computation in the dorsal raphe network revealed by an experimentally-driven augmented integrate-and-fire modeling framework. eLife 12, e72951 (2023).
Bromberg-Martin, E. S., Hikosaka, O. & Nakamura, K. Coding of task reward value in the dorsal raphe nucleus. J. Neurosci. 30, 6262–6272 (2010).
Cohen, J. Y., Amoroso, M. W. & Uchida, N. Serotonergic neurons signal reward and punishment on multiple timescales. eLife 4, e06346 (2015).
Li, Y. et al. Serotonin neurons in the dorsal raphe nucleus encode reward signals. Nat. Commun. 7, 10503 (2016).
Zhong, W., Li, Y., Feng, Q. & Luo, M. Learning and stress shape the reward response patterns of serotonin neurons. J. Neurosci. 37, 8863–8875 (2017).
Ren, J. et al. Anatomically defined and functionally distinct dorsal raphe serotonin sub-systems. Cell 175, 472–487 (2018).
Feng, Y.-Y., Bromberg-Martin, E. S. & Monosov, I. E. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep. 43, 114341 (2024).
Soubrié, P. Reconciling the role of central serotonin neurons in human and animal behavior. Behav. Brain Sci. 9, 319–335 (1986).
Deakin, J. F. W. & Graeff, F. G. 5-HT and mechanisms of defence. J. Psychopharmacol. 5, 305–315 (1991).
Jacobs, B. & Fornal, C. in Psychopharmacology: 4th Generation of Progress (eds Bloom, F.E. & Kupfer D.J.) 461–469 (Raven, 1995).
Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).
Dayan, P. & Huys, Q. Serotonin in affective control. Annu. Rev. Neurosci. 32, 95–126 (2009).
Boureau, Y.-L. & Dayan, P. Opponency revisited: competition and cooperation between dopamine and serotonin. Neuropsychopharmacology 36, 74–97 (2011).
Cools, R., Nakamura, K. & Daw, N. D. Serotonin and dopamine: unifying affective, activational, and decision functions. Neuropsychopharmacology 36, 98–113 (2011).
Azmitia, E. C. in Handbook of the Behavioral Neurobiology of Serotonin Vol. 31 (eds Müller, C. P. & Cunningham, K. A.) 3–22 (Elsevier, 2020).
Shine, J. M. et al. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 145, 2967–2981 (2022).
Koolschijn, R. S. et al. Resources, costs and long-term value: an integrative perspective on serotonin and meta-decision making. Curr. Opin. Behav. Sci. 60, 101453 (2024).
Luo, M., Li, Y. & Zhong, W. Do dorsal raphe 5-HT neurons encode ‘beneficialness’? Neurobiol. Learn. Mem. 135, 40–49 (2016).
Spring, M. G. & Nautiyal, K. M. Striatal serotonin release signals reward value. J. Neurosci. 44, e0602242024 (2024).
Haider, P. et al. Latent equilibrium: a unified learning theory for arbitrarily fast computation with arbitrarily slow neurons. Adv. Neural Inf. Process. Syst. 34, 17839–17851 (2021).
Srinivasan, M., Laughlin, S. & Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. R. Soc. Lond. 216, 427–459 (1982).
Spratling, M. A review of predictive coding algorithms. Brain Cognition 112, 92–97 (2017).
Chalk, M., Marre, O. & Tkačik, G. Toward a unified theory of efficient, predictive, and sparse coding. Proc. Natl Acad. Sci. USA 115, 186–191 (2018).
Masani, K., Vette, A. & Popovic, M. Controlling balance during quiet standing: proportional and derivative controller generates preceding motor command to body sway position observed in experiments. Gait Posture 23, 164–172 (2006).
De Jong, J. W., Liang, Y., Verharen, J. P. H., Fraser, K. M. & Lammel, S. State and rate-of-change encoding in parallel mesoaccumbal dopamine pathways. Nat. Neurosci. 27, 309–318 (2024).
Lundstrom, B. N., Higgs, M. H., Spain, W. J. & Fairhall, A. L. Fractional differentiation by neocortical pyramidal neurons. Nat. Neurosci. 11, 1335–1342 (2008).
Kim, H. R. et al. A unified framework for dopamine signals across timescales. Cell 183, 1600–1616.e25 (2020).
Baleanu, D., Fernandez, A. & Akgül, A. On a fractional operator combining proportional and classical differintegrals. Mathematics 8, 360 (2020).
dos Santos Matias, S. P. Dynamics of Serotonergic Neurons Revealed by Fiber Photometry. PhD thesis, Univ. NOVA de Lisboa (2016).
Daw, N. D., Kakade, S. & Dayan, P. Opponent interactions between serotonin and dopamine. Neural Netw. 15, 603–616 (2002).
Kobayashi, S. & Schultz, W. Influence of reward delays on responses of dopamine neurons. J. Neurosci. 28, 7837–7846 (2008).
Masset, P. et al. Multi-timescale reinforcement learning in the brain. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566754 (2023).
Sousa, M. et al. Dopamine neurons encode a multidimensional probabilistic map of future reward. Preprint at bioRxiv https://doi.org/10.1101/2023.11.12.566727 (2023).
Miyazaki, K., Miyazaki, K. W. & Doya, K. Activation of dorsal raphe serotonin neurons underlies waiting for delayed rewards. J. Neurosci. 31, 469–479 (2011).
Cohen, J., Grossman, C. & Bari, B. Serotonin neurons modulate learning rate through uncertainty. Dryad https://doi.org/10.5061/dryad.cz8w9gj4s (2021).
Aghajanian, G. & Vandermaelen, C. Intracellular recordings from serotonergic dorsal raphe neurons: pacemaker potentials and the effects of LSD. Brain Res. 238, 463–469 (1982).
Vandermaelen, C. & Aghajanian, G. Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res. 289, 109–119 (1983).
Lynn, M. B. et al. A slow 5-HT1AR-mediated recurrent inhibitory network in raphe computes contextual value through synaptic facilitation. Preprint at bioRxiv https://doi.org/10.1101/2022.08.31.506056 (2022).
Miyazaki, K. et al. Reward probability and timing uncertainty alter the effect of dorsal raphe serotonin neurons on patience. Nat. Commun. 9, 2048 (2018).
Okaty, B. W., Commons, K. G. & Dymecki, S. M. Embracing diversity in the 5-HT neuronal system. Nat. Rev. Neurosci. 20, 397–424 (2019).
Dabney, W. et al. A distributional code for value in dopamine-based reinforcement learning. Nature 577, 671–675 (2020).
Lee, R. S., Sagiv, Y., Engelhard, B., Witten, I. B. & Daw, N. D. A feature-specific prediction error model explains dopaminergic heterogeneity. Nat. Neurosci. 27, 1574–1586 (2024).
Calizo, L. H. et al. Raphe serotonin neurons are not homogenous: electrophysiological, morphological and neurochemical evidence. Neuropharmacology 61, 524–543 (2011).
Fernandez, S. P. et al. Multiscale single-cell analysis reveals unique phenotypes of raphe 5-HT neurons projecting to the forebrain. Brain Struct. Funct. 221, 4007–4025 (2016).
van Seijen, H. & Sutton, R. True online TD(λ). Int. Conf. Mach. Learn. 32, 692–700 (2014).
Van Seijen, H., Mahmood, A. R., Pilarski, P. M., Machado, M. C. & Sutton, R. S. True online temporal-difference learning. J. Mach. Learn. Res. 17, 5057–5096 (2016).
Ranade, S. P. & Mainen, Z. F. Transient firing of dorsal raphe neurons encodes diverse and specific sensory, motor, and reward events. J. Neurophysiol. 102, 3026–3037 (2009).
Elber-Dorozko, L. & Loewenstein, Y. Striatal action-value neurons reconsidered. eLife 7, e34248 (2018).
Hesterberg, T. C. What teachers should know about the bootstrap: resampling in the undergraduate statistics curriculum. Am. Statistician 69, 371–386 (2015).
Li, Y. & Luo, M. In vivo electrophysiological data of DRN serotonin neurons. Zenodo https://doi.org/10.5281/zenodo.12776509 (2024).
Harkin, E. F. & Naud, R. Code and data for ‘A prospective code for value in the serotonin system’. Zenodo https://doi.org/10.5281/zenodo.14623230 (2025).
Source link
Add a Comment